## Synthesis and Investigation of Poly(triazologuinazolines)

#### V. V. Korshak, A. L. Rusanov, \* Ts. G. Iremashvili, I. V. Zhuravleva, and E. L. Baranov

Institute of Elemento-Organic Compounds, Academy of Sciences of U.S.S.R., Moscow, U.S.S.R. Received October 16, 1972

ABSTRACT: A number of polymers containing triazologuinazoline cycles in the main chains of macromolecules have been prepared by two-stage polycyclocondensation of bis[5-(2-aminophenyl)-1,2,4-triazol-3-yl]arylenes with aromatic dicarboxylic acid dichlorides. The resulting "step-ladder" polymers are completely soluble in trifluoroacetic and sulfuric acids, the reduced viscosities of solutions being 0.3-1 dl/g. The resulting polymers are highly stable to thermooxidative degradation, as shown by dynamic and isothermal thermogravimetric analyses.

Extending the early investigations in the field of new heterocyclic polymers, poly(triazoloquinazolines), 1-4 we have synthesized a number of polymers of this class by in-

teraction of bis[5-(2-aminophenyl)-1,2,4-triazol-3-yl]arylenes with aromatic dicarboxylic acids or with their derivatives. The polymer synthesis was carried out by twostage polycyclization or one-stage reaction in poly(phosphoric acid),  $(P)_n$ .

Starting diamines, 1,3-bis[5-(2-aminophenylene)-1,2,4triazol-3-yl]benzene (Va), 1,4-bis[5-(2-aminophenylene)-1,2,4-triazol-3-yl]benzene (Vb), 2,6-bis[5-(2-aminophenylene)-1,2,4-triazol-3-yl|pyridine (Vc), have been synthesized by two ways (see Scheme I).

Prior to polymer synthesis, a series of model compounds were prepared as a guide to polymer synthesis and identi-

The simplest model compounds, 3-phenyl-5-(2-benzamidophenylene)-1,2,4-triazole (VII) and 3,5-diphenyl-s-triazolo[4,3-c]quinazoline (VIII), have been obtained by interof 3-phenyl-5-(2-aminophenylene)-1,2,4-triazole (VI) with benzoyl chloride in hexamethylphosphoramide (HMPA) followed by thermal cyclodehydration or by interaction of VI with benzoic acid in poly(phosphoric acid)  $(P_n)$  (see Scheme II).

It should be noted that two isomeric compounds can be produced by cyclodehydration of VII (Scheme III). We succeeded, however, in obtaining only one product of cyclodehydration VII. The structure of this product is presently under investigation; in this paper it is tentatively designated as isomer VIII.

- (1) V. V. Korshak, A. L. Rusanov, and Ts. G. Iremashvili, Autor. Svidetelstvo SSSR, in press.
- (2) V. V. Korshak, A. L. Rusanov, E. L. Baranov, Ts. G. Iremashvili, and T. B. Bezhuashvili, Dokl. Akad. Nauk SSSR, 196, 1357 (1971).
- (3) P. M. Hergenrother, Polym. Prepr. Amer. Chem. Soc., Div. Polym. Chem., 12, 55 (1971).
- (4) P. M. Hergenrother, J. Polym. Sci., Part A, 9, 2377 (1971).

484 Rusanov et al. Macromolecules

More complicated model compounds have been obtained by reacting VI with aromatic dicarboxylic acid dichlorides in HMPA followed by thermal cyclodehydration of the reaction products (Scheme IV) as well as by reacting bis[5-(2-aminophenyl-1,2,4-triazol-3-yl]arylenes with benzoyl chloride in HMPA followed by heating of the reaction products (Scheme V).

The structure of all model compounds was confirmed by elemental chemical analysis (Table I) and ir and uv (Table I) spectroscopy. The infrared spectra of all o-amido triazoles exhibited the absorption bands at 1640–1670 cm<sup>-1</sup> which indicated the presence of amide bonds, at 2800–3400 cm<sup>-1</sup>, which indicated the presence of NH in amide bonds and triazole cycles. In the course of cyclodehydration these bands disappeared, and new bands

characteristic of the tertiary nitrogen atom of triazoloquinazoline cycle appeared at 1380 cm<sup>-1</sup>. As seen from the ultraviolet spectra, the cyclization is accompanied by an increase in intensity, which indicates the formation of a system having a higher degree of conjugation.

Some characteristics of the synthesized model compounds are given in Table I. It should be noted that there are two exothermal processes on the curves obtained from differential thermal analysis of all bis(triazoloquinazolines), which points to a two-stage degradation of these compounds.

The polymers were synthesized according to Scheme VI, where Ar is as in Scheme I and Ar' is as Ar in Scheme IV.

Poly(triazoloquinazoline) synthesis in  $P_n^{1-4}$  was realized by interaction of 1,3- and 1,4-bis[5-(2-aminophenylene)-1,2,4-triazol-3-yl]phenylenes (Va and -b) with dinitriles of isophthalic and terephthalic acids. The resulting polymers had viscosities of  $\eta_{\rm red}=0.82\text{--}1.2$ , yet were soluble only in concentrated  $H_2SO_4$ , which largely hampers their processing. In this investigation the two-stage method of poly(triazoloquinazoline) synthesis received, therefore, primary emphasis.

The first stage of the two-stage process consisted in the reaction of Va-c with aromatic dicarboxylic acid dichloride under conditions of low-temperature acceptor catalytic polycondensation in HMPA in the presence of LiCl or without it.

On conducting polycondensation in other bipolar aprotic solvents (dimethylacetamide, N-methyl-2-pyrrolidone, and so on) polymers with the most rigid chains were isolated from the reaction solution.

The structure of the polymers synthesized was con-

# NC-Ar'-IXa-h XIVa, b Va-c

-2nH₂O

Scheme VI

firmed by elemental chemical analysis, as well as by comparison of their infrared and ultraviolet spectra with those of the model compounds (Table I).

Poly(o-amido triazoles) are white to light brown powders soluble in hexamethylphosphoramide, trifluoroacetic, formic, and sulfuric acids depending on thier structure.

Comparatively low viscosity properties of the resulting polymers ( $\eta_{red} = 0.28-0.72$ ), indicating a rather low degree of polymerization, can be due both to low nucleophilic reactivity of the diamines used and to possible formation, along with linear macromolecules, of various macrocycles, the simplest of which may be represented as

Due to low viscosities of the polymer solutions, only brittle films were prepared from them.

The X-ray analysis of poly(o-amido triazoles) showed that these polymers were partially crystalline, which points to some order of these systems in spite of the asymmetry of their macromolecules.

The resulting poly(o-amido triazoles) begin to soften in the temperature range of 300-350° as shown by thermomechanical analysis data.

Differential thermal analysis and differential and integral thermogravimetric analysis of poly(o-amido triazoles) showed that the weight loss of these polymers occurs in temperature ranges of 60-150°, 300-350°, and at above 475°. The weight loss in the range of 60-150° is apparently brought about by the removal of absorption moisture; that in the range of 300-350° is connected with cyclization of o-amido triazole units to triazoloquinazoline ones (Scheme VII), and that at 470° is associated with the degradation process of poly(triazoloquinazolines).

The main properties of poly(o-amido triazoles) are given in Table II. The poly(o-amido triazoles) synthesized were cyclodehydrated to corresponding poly(triazoloquinazolines) under reduced pressure (0.5 mm) at a maximum temperature of 350-375° for 12 hr. Cyclization conditions for polymers are given in the Experimental Section.

The structure of poly(triazoloquinazolines) was confirmed by the data of elemental chemical analysis, as well as by comparision of the infrared and ultraviolet spectra of polymers with those of the corresponding model compounds (Table III).

Scheme VII

$$\begin{bmatrix}
N & N & N \\
C & N & C \\
H & 0
\end{bmatrix}$$

$$\begin{bmatrix}
N & N & N \\
N & C & N
\end{bmatrix}$$

$$\begin{bmatrix}
N & N & N \\
N & C & N
\end{bmatrix}$$

$$\begin{bmatrix}
N & N & N \\
C & N & C
\end{bmatrix}$$

Η

HN

ΙH

As in the case of model compounds, the cyclization of poly(o-amido triazoles) to poly(triazoloquinazolines) is accompanied by the disappearance in the infrared spectra of absorption bands assigned to amide bonds and NH groups of the amide and triazole cycle (1640-1670 and 2800-3400 cm<sup>-1</sup>), as well as by the appearance of the absorption band at 1380 cm<sup>-1</sup> assigned to the tertiary nitrogen atom. As seen from the ultraviolet spectra, the cyclization is accompanied by the increase in absorption intensity, which is indicative of the formation of a system of a higher degree of conjugation.

The resulting poly(triazoloquinazolines) are brown powders soluble in CF<sub>3</sub>COOH and H<sub>2</sub>SO<sub>4</sub> (Table III).

As shown by the data of the X-ray analysis, the cyclization gives rise to increasing order in these polymers, that is, all poly(triazoloquinazolines) are crystalline.

As seen from the thermomechanical curves of these polymers, they soften in the range of 400-450°.

Some characteristics of poly(triazoloquinazolines) are given in Table III.

Degradation temperatures of poly(triazoloquinazolines) were determined by dynamic and isothermal thermogravimetric analysis in air. As shown by the dynamic thermogravimetric analysis (circulating air,  $\Delta T = 4.5^{\circ}/\text{min}$ ) the polymers undergo degradation in air (10% weight loss) at 460-545°. Some results of dynamic thermogravimetric analysis are given in Figures 1 and 2 and Table III.

The most thermally stable polymers (for instance, polymer XXIV) reveal practically no weight loss at 425° by isothermal thermogravimetric analysis (in circulating air for 10 hr); at higher temperatures considerable decomposition takes place (Figure 3a). The comparison of polymers XVIc, XXIVc, and XXXIIc prepared from various diamines and terephthaloyl chloride (Figure 3b) showed

Table I Some Properties of Model Compounds

| (°C)          |             | Temp         | 17                        |                 |                                                |                                                              |                                                              |                      |             |                                   |                      |                      |                      |                                                                    |      | 260                        | 280               | 580               | 3                  | 290                                            |      | 280                                            | 009                         | 009                | 280                                                                |                                                   |                      |
|---------------|-------------|--------------|---------------------------|-----------------|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------|-------------|-----------------------------------|----------------------|----------------------|----------------------|--------------------------------------------------------------------|------|----------------------------|-------------------|-------------------|--------------------|------------------------------------------------|------|------------------------------------------------|-----------------------------|--------------------|--------------------------------------------------------------------|---------------------------------------------------|----------------------|
| Dec Temp (°C) | Max.        | Temp<br>I    | 16                        |                 |                                                |                                                              |                                                              |                      |             |                                   |                      |                      |                      |                                                                    |      | 490                        | 200               | 200               | 3                  | 505                                            |      | 200                                            | 510                         | 510                | 515                                                                |                                                   |                      |
| Dec           | Dec         | ning<br>ning | 15                        |                 |                                                |                                                              |                                                              |                      |             |                                   |                      |                      |                      |                                                                    |      | 440                        | 440               | 440               |                    | 460                                            |      | 450                                            | 430                         | 430                | 460                                                                |                                                   |                      |
|               | Uv Spectraa | Loge         | 14                        | 4.70            | 4.98                                           | 4.87                                                         | 4.78                                                         | 4.83                 | 4.89<br>4.6 | 4.89                              | 4.83                 | 4.35<br>4.75         | 4.0                  | 4.9                                                                | 4.22 | 5.04<br>4.5                | 5.02              | 4.4               | 4.82               | 4.34<br>4.75                                   | 4.68 | 5.2<br>4.6                                     | 5.16                        | 5.01               | 4.94                                                               | 4.83                                              | 6.4                  |
|               | Uv S        | λтах         | 13                        | 338             | 286<br>341                                     | 285                                                          | 285<br>348                                                   | 262                  | 288<br>370  | 279<br>328                        | 256                  | 239<br>275           | 280                  | 285                                                                | 340  | 289<br>345                 | 289               | 345<br>969        | 788<br>788<br>788  | 342<br>278                                     | 400  | 276<br>370                                     | 277                         | 294                | 289<br>346                                                         | 261<br>254                                        | 257                  |
|               |             | z            | 12                        | 16.45           | 17.39                                          | 9.81                                                         | 18.6                                                         | 16.52                |             | 17.17                             | 20.90                | 16.16                | 15.87                | 16.00                                                              |      | 19.79                      | 19.79             | 17 44             | +                  | 18.18                                          |      | 22.22                                          | 17.02                       | 16.71              | 15.86                                                              | 18.70<br>18.70                                    | 21.27                |
|               | Calcd (%)   | н            | 11                        | 4.69            | 4.37                                           | 4.32                                                         | 4.32                                                         | 4.42                 |             | 4.30                              | 4.14                 | 4.32                 | 4.24                 | 4.04                                                               |      | 3.89                       | 3.89              | 30 4              | £.00               | 3.88                                           |      | 3.7                                            | 3.95                        | 3.88               | 3.68                                                               | 4.32                                              | 4.96                 |
| Anal.         | Ö           | ၁            | 10                        | 74.15           | 78.25                                          | 71.59                                                        | 71.59                                                        | 74.33                |             | 73.62                             | 69.65                | 72.05                | 73.08                | 67.92                                                              |      | 76.32                      | 76.32             | 70 5              | 6.61               | 77.92                                          |      | 74.02                                          | 73.56                       | 77.01              | 71.10                                                              | 71.59                                             | 70.82                |
| An            |             | z            | 6                         | 16.10           | 17.15                                          | 18.09                                                        | 18.30                                                        | 15.90                |             | 66.91                             | 20.58                | 16.02                | 15.94                | 15.89                                                              |      | 19.48                      | 19.61             | 19 97             | 17:11              | 17.67                                          |      | 22.22                                          | 16.58                       | 16.82              | 15.76                                                              | 18.70<br>18.35                                    | 21.05                |
|               | Found (%)   | ж            | 8                         | 4.59            | 4.25                                           | 4.44                                                         | 4.30                                                         | 4.49                 |             | 4.03                              | 4.10                 | 4.15                 | 4.18                 | 4.16                                                               |      | 3.82                       | 3.75              | <u> </u>          | 4.10               | 3.44                                           |      | 4.0                                            | 4.17                        | 3.18               | 3.52                                                               | 4.49                                              | 4.16                 |
|               |             | C            | 7                         | 73.96           | 78.34                                          | 71.28                                                        | 71.16                                                        | 74.03                |             | 73.70                             | 69.32                | 71.95                | 72.84                | 67.58                                                              |      | 75.93                      | 76.03             | 99                | 00.17              | 77.49                                          |      | 73.44                                          | 72.15                       | 76.59              | 70.92                                                              | 69.83<br>71.08                                    | 70.47                |
|               |             |              | General Formula<br>6      | C21H16N4O       | $\mathrm{C}_{21}\mathrm{H}_{14}\mathrm{N}_{4}$ | $\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{N}_{8}\mathrm{O}_{2}$ | $\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{N}_{8}\mathrm{O}_{2}$ | $C_{42}H_{30}N_8O_2$ |             | $\mathrm{C_{40}H_{28}N_{8}O_{2}}$ | $C_{35}H_{25}N_9O_2$ | $C_{42}H_{30}N_8O_3$ | $C_{43}H_{30}N_8O_3$ | $\mathrm{C}_{42}\mathrm{H}_{30}\mathrm{N}_8\mathrm{O}_4\mathrm{S}$ |      | $\mathrm{C_{36}H_{22}N_8}$ | $C_{36}H_{22}N_8$ | N. H. O           | 7.421126118        | $\mathrm{C}_{40}\mathrm{H}_{24}\mathrm{N}_{8}$ |      | $\mathrm{C}_{35}\mathrm{H}_{21}\mathrm{N}_{9}$ | $\mathrm{C_{42}H_{26}N_8O}$ | $C_{43}H_{26}N_8O$ | $\mathrm{C}_{42}\mathrm{H}_{26}\mathrm{N}_8\mathrm{O}_2\mathrm{S}$ | $C_{36}H_{26}N_{8}O_{2}$ $C_{36}H_{26}N_{8}O_{2}$ | $C_{35}H_{25}N_9O_2$ |
|               |             | <u> </u>     | Mp (°C)<br>5              | 256             | 175                                            | 328-330                                                      | 380-382                                                      | 355-358              |             | 391–394                           | 330                  | 320                  | 315                  | 308-310                                                            |      | 333-335                    | 368-370           | 956 956           | 000-000            | 397-400                                        |      | 366–367                                        | 310                         | 330-331            | 345-348                                                            | 310<br>382-383                                    | 321                  |
|               |             |              | Yield (%)<br>4            | 79              | 80                                             | 86.3                                                         | 83                                                           | 80                   |             | 78.8                              | 81                   | 75                   | 78                   | 84                                                                 |      | 75                         | 92                | o                 | 3                  | 75                                             |      | 85                                             | 98                          | 85                 | 80                                                                 | 80 82                                             | 75                   |
|               |             |              | Purifcn by Crystzn $^{o}$ | DMF-water (1:1) | $C_2H_5OH$                                     | DMF-water (2:1)                                              | DMF-water (2:1)                                              | DMF                  |             | DMF                               | DMF-water (1:2)      | DMF-water (1:1)      | DMF                  | DMF-water (1:1)                                                    |      | DMF                        | DMA               | DME clockel (1.1) | DMI -arconol (1.1) | DMA                                            |      | DMF                                            | DMA-alcohol (1:1)           | DMF                | DMA                                                                | Alcohol<br>DMF                                    | DMF                  |
|               |             | Synthesis    | Condns (°C/hr)<br>2       |                 |                                                |                                                              |                                                              |                      |             |                                   |                      |                      |                      |                                                                    |      | 375 -385/34                | 375-385/3-4       | 17 256 036        | */ere_ooe          | 390-395/4                                      |      | 400/4                                          | 300-320/4                   | 400/4              | 330 – 334/3 – 4                                                    |                                                   |                      |
|               |             | Com-         | ponud<br>1                | VII             | VIII                                           | Xa                                                           | Xb                                                           | Xc                   |             | Хd                                | Xe                   | УĽ                   | Xg                   | Xh                                                                 |      | XIa                        | XIb               | VI.               | al C               | XId                                            |      | XIe                                            | XIf                         | XIg                | XIh                                                                | XIIIa<br>XIIIb                                    | XIIc                 |

"Ultraviolet spectra are obtained in H2SO4, solution concentration being 10 5 mol/l. "DMF = dimethyformamide; DMA = dimethylacetamide. "Mp reported 264-264.5" (see ref 3, 4, and 13).

Table II Some Properties of Poly(amidotriazoles) of the General Structure

|            |       | Uv Spectra <sup>6</sup> | Log e<br>19                                                    | 4.35                                                     | 4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.47                 | 4.65                                                     | 4.8                  | 4.73                 | 4.55                                                     |
|------------|-------|-------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|----------------------|----------------------|----------------------------------------------------------|
|            |       |                         | λ <sub>max</sub> 18                                            | 236<br>294                                               | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 530                  | 305                                                      | 256<br>289           | 236                  | 280                                                      |
|            |       |                         | H H <sub>2</sub> SO <sub>4</sub>                               | œ                                                        | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ø                    | œ                                                        | w                    | S                    | œ                                                        |
| Solubility |       | 5                       | 00H J                                                          | œ                                                        | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | œ                    | $\operatorname{sd}$                                      | ins                  | ins                  | ins                                                      |
| Solu       |       | Ē                       | COOH<br>15                                                     | so                                                       | ss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | œ                    | œ                                                        | œ                    | œ                    | s                                                        |
|            | Hexa- | ylphos-                 | phor-<br>amide (<br>14                                         | ps                                                       | ss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | œ                    | sd                                                       | sd                   | sd                   | sd                                                       |
| 1          |       |                         | Z 22                                                           | 19.33                                                    | 19.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.55                | 17.80                                                    | 18.26                | 17.63                | 16.76                                                    |
|            |       | Found (%)               | H<br>12                                                        | 4.65                                                     | 3.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.18                 | 4.55                                                     | 4.03                 | 3.86                 | 3.92                                                     |
|            | Anal. | ,                       | C                                                              | 67.79                                                    | 67.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65.19                | 69.82                                                    | 69.93                | 69.19                | 66.39                                                    |
|            | Aı    |                         | Z 9                                                            | 21.37                                                    | 21.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.0                 | 18.66                                                    | 19.42                | 18.18                | 17.83                                                    |
|            |       | Calcd (%)               | H<br>6                                                         | 3.81                                                     | 3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.62                 | 4.0                                                      | 4.17                 | 3.9                  | 3.81                                                     |
|            |       | 0                       | ၁%                                                             | 68.72                                                    | 68.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66.28                | 72.00                                                    | 70.83                | 70.13                | 70.8                                                     |
|            |       | 5                       | Ceneral<br>Formula                                             | $\mathrm{C}_{30}\mathrm{H}_{20}\mathrm{N}_8\mathrm{O}_2$ | $C_{30}H_{20}N_8O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_{29}H_{19}N_9O_2$ | $\mathrm{C}_{36}\mathrm{H}_{24}\mathrm{N}_8\mathrm{O}_2$ | $C_{34}H_{24}N_8O_2$ | $C_{36}H_{24}N_8O_3$ | $\mathrm{C}_{37}\mathrm{H}_{24}\mathrm{N}_8\mathrm{O}_3$ |
|            |       |                         | Tield Color of $(\%)$ $\eta_{\rm red}{}^a$ Polymer $4$ $5$ $6$ | Light brown                                              | Light brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Light yellow         | Light brown                                              | Light yellow         | White                | Yellow                                                   |
|            |       |                         | $\eta_{\mathrm{red}}^a$                                        | 0.41                                                     | 0.52 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0                  | 0.28                                                     | 0.55                 | 0.33                 | 0.27                                                     |
|            |       |                         | Y reld<br>(%)<br>4                                             | 80                                                       | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82                   | 80                                                       | 78                   | 85                   | 98                                                       |
|            |       |                         | Ar Ar' 3                                                       |                                                          | <b>\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\</b> | ⊘z                   | <del>-</del>                                             |                      | <del>-</del> 0-0-€   |                                                          |
|            |       |                         | Compound<br>1                                                  | )<br>Ax                                                  | XVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ХУШ                  | XVIII                                                    | XIX                  | XXX                  | IXX                                                      |

|            |       | Uv Spectra | Log e<br>19                     | 4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.92                                                     | 4.96                 | 4.76                     | 4.87                     | 4.96                 | 4.95                     | 4.96       |                           | 4.95                     | 5.11                      | 4.28                      | 4.84                                                         | 4.64<br>4.47             | 4.84                 | 4.86                     | 4.78              |
|------------|-------|------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|--------------------------|--------------------------|----------------------|--------------------------|------------|---------------------------|--------------------------|---------------------------|---------------------------|--------------------------------------------------------------|--------------------------|----------------------|--------------------------|-------------------|
|            |       | Uv Sp      | λ <sub>max</sub> 18             | 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 275<br>352                                               | 282                  | 275<br>352               | 274<br>390               | 273<br>3.68          | 273                      | 283<br>347 |                           | 282<br>346               | 275                       | 260<br>295                | 300                                                          | 264<br>310               | 273                  | 283<br>340               | 272               |
|            |       |            | H <sub>2</sub> SO <sub>4</sub>  | ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | so                                                       | ø                    | ø                        | œ                        | so                   | ø                        | s          | ss                        | œ                        | ø                         | œ                         | s                                                            | œ                        | s                    | s                        | æ                 |
| Solubility |       | UH         | -                               | ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sd                                                       | sd                   | sd                       | sd                       | ins                  | ins                      | ins        | ins                       | S                        | ø                         | ø                         | sd                                                           | sd                       | ins                  | ins                      | ins               |
| Solu       |       | CE         | C00H<br>15                      | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ø                                                        | œ                    | w                        | œ                        | œ                    | œ                        | œ          | SS                        | œ                        | œ                         | <b>s</b>                  | œ                                                            | တ                        | œ                    | ø                        | ø                 |
|            | Hexa- | ylphos-    | pnor-<br>amide<br>14            | bs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | œ                                                        | ø                    | œ                        | œ                        | S                    | œ                        | sd         | ins                       | œ                        | œ                         | s                         | s                                                            | sd                       | $\operatorname{sd}$  | ins                      | ins               |
| İ          |       |            | ZE                              | 17.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.40                                                    | 19.28                | 22.83                    | 17.31                    | 19.17                | 17.59                    | 16.77      | 16.07                     | 22.94                    | 23.07                     | 25.96                     | 19.48                                                        | 21.06                    | 19.17                | 18.98                    | 18.20             |
|            |       | Found (%)  | H<br>12                         | 4.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.72                                                     | 3.91                 | 4.28                     | 4.29                     | 3.83                 | 4.08                     | 3.83       | 3.51                      | 3.38                     | 3.90                      | 3.50                      | 3.75                                                         | 4.03                     | 3.45                 | 3.70                     | 3.05              |
|            | Anal. |            | C<br>11                         | 64.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.82                                                    | 66.85                | 65.53                    | 70.82                    | 69.17                | 68.46                    | 71.04      | 63.87                     | 65.98                    | 65.64                     | 62.28                     | 86.89                                                        | 67.84                    | 66.58                | 67.09                    | 62.45             |
| i          | A,    |            | 22                              | 16.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.37                                                    | 21.37                | 24.0                     | 18.66                    | 19.42                | 18.18                    | 17.83      | 16.87                     | 24.00                    | 24.00                     | 26.61                     | 20.96                                                        | 21.83                    | 20.42                | 20                       | 19                |
|            |       | Calcd (%)  | H 6                             | 3.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.81                                                     | 3.81                 | 3.62                     | 4.0                      | 4.17                 | 3.9                      | 3.81       | 3.61                      | 3.62                     | 3.62                      | 3.42                      | 3.82                                                         | 4.00                     | 3.72                 | 3.64                     | 3.46              |
| !          |       |            | ပ                               | 65.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68.72                                                    | 68.72                | 66.28                    | 72.00                    | 70.83                | 70.18                    | 70.80      | 90.29                     | 06.30                    | 66.30                     | 63.88                     | 70.00                                                        | 68.63                    | 68.09                | 68.46                    | 63.16             |
|            |       | -          | Ceneral<br>Formula              | C <sub>36</sub> H <sub>24</sub> N <sub>8</sub> O <sub>4</sub> S 65.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathrm{C}_{30}\mathrm{H}_{20}\mathrm{N}_8\mathrm{O}_2$ | $C_{30}H_{20}N_8O_2$ | $C_{29}H_{19}N_{9}O_{2}$ | $C_{36}H_{24}N_{8}O_{2}$ | $C_{34}H_{24}N_8O_2$ | $C_{36}H_{24}N_{8}O_{3}$ | C37H24N8O4 | $C_{36}H_{24}N_{9}O_{1}S$ | $C_{29}H_{19}N_{9}O_{2}$ | $C_{29}H_{19}N_{19}O_{2}$ | $C_{28}H_{18}N_{10}O_{2}$ | $\mathrm{C}_{35}\mathrm{H}_{23}\mathrm{N}_{9}\mathrm{O}_{2}$ | $C_{33}H_{23}N_{9}O_{2}$ | $C_{35}H_{23}N_9O_3$ | $C_{36}H_{23}N_{9}O_{3}$ | C35H23N9O4S 63.16 |
|            |       | -          | Color of<br>Polymer<br>6        | Light brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Light brown                                              | Light brown          | Light yellow             | Light brown              | White                | White                    | Yellow     | Yellow                    | White                    | White                     | Yellow                    | Yellow                                                       | White                    | Yellow               | Yellow                   | Yellow            |
|            |       |            | $\eta_{\mathrm{red}^a}$         | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.36                                                     | 0.31                 | 0.71                     | 0.41                     | 9.0                  | 0.32                     | 0.33       | 0.45                      | 0.42                     | 0.35                      | 0.72                      | 0.4                                                          | 0.45                     | 0.52                 | 0.43                     | 9.0               |
|            |       | ;          | Yield<br>(%)<br>4               | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82                                                       | 96                   | 75                       | 80                       | 75                   | 85                       | 78         | 08                        | 83                       | 84                        | 28                        | 75                                                           | <b>0</b> 8               | 82                   | 78                       | 80                |
|            |       |            | Ar.                             | -\(\)-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\-\(\)\- |                                                          | •                    |                          |                          |                      |                          |            |                           |                          | •                         |                           |                                                              |                          |                      |                          |                   |
|            |       |            | Ar<br>2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | >                    |                          |                          |                      |                          |            |                           |                          | z                         |                           |                                                              |                          |                      |                          | =                 |
|            |       |            | $\underset{1}{\text{Compound}}$ | IIXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | XXIII                                                    | XXIV                 | XXX                      | XXVI                     | XXVII                | XXVIII                   | XXXX       | XXX                       | XXXI                     | XXXII                     | XXXIII                    | XXXIV                                                        | XXXX                     | XXXVI                | XXXVII                   | IIIAXXX           |

 $a_{\text{nred}}$  of 0.5% CF<sub>3</sub>COOH solution at 25°,  $b_{\text{Ultraviolet}}$  spectra obtained in H<sub>2</sub>SO<sub>4</sub> with  $c = 10^{-5} \, \text{mol/l}$ .  $c_{\text{Polymer}}$  described by Hergenrother.  $a_{\text{S}} = a_{\text{Soluble}}$ ; ps = partially soluble; ins = insoluble.

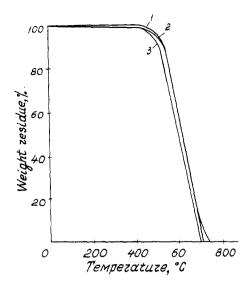



Figure 1. Curves of the dynamic thermogravimetric analysis of poly(triazoloquinazolines) XVIc (1), XXIVc (2), and XXXIIc (3) (in air,  $\Delta T = 4.5^{\circ}/\text{min}$ )

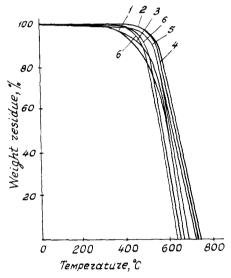



Figure 2. Curves of the dynamic thermogravimetric analysis of poly(triazoloquinazolines) XXIVc (1), XXVIc (2), XXIIIc (3), XXVIIc (4), XXIXc (5), XXVIIIc (6), XXVc (7).

that the thermal stability polymers decreases depending on the diamine residue in Chart I.5

The comparison of polymers prepared from 1,3-bis[5(2aminophenylene)-1,2,4-triazol-3-yl]benzene and dichlorides of various dicarboxylic acids (Figure 3c) showed that the introduction of flexibilizing groups to macromolecules leads to notable lowering of thermal properties of the polymers; this is in agreement with the results obtained previously.6 Investigations of the influence of the acid residue on poly(triazoloquinazoline) indicated that thermal stability of polymers decreases according to Chart II.

Brittle films were obtained from solutions of some poly(triazoloquinazolines) in trifluoroacetic acid.

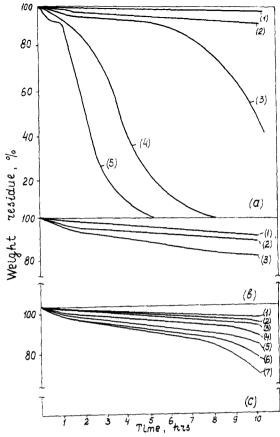



Figure 3. Curves of the isothermal thermogravimetric analysis (in air, for 10 hr). (a) Poly(triazoloquinazoline) XXIVc at 400° (1), 425° (2), 450° (3), 475° (4), 500° (5); (b) poly(triazoloquinazolines) XVIc (1), XXIVc (2), and XXXIIc at 425°; (c) poly(triazoloquinazolines) XXIIIc-XXIXc at 425°: XXIVc (1), XXIIIc (2), XXVIc (3), XXVIIc (4), XXIXc (5), XXVc (6), XXVIIc (7).

#### **Experimental Section**

The bisiminoethyl ether of isophthalic acid (la) was obtained as described previously<sup>7</sup> and purified by crystallization from dry ether cooled up to -15 to  $-20^{\circ}$ : mp 71°, lit. mp 71°,  $^{7}$  yield 70%.

The bisiminoethyl ether of terephthalic acid (1a) was obtained as described previously8 and purified by crystallization from dry dioxane: mp 105°, lit. mp 102.5-103.5°, 8 yield 73%.

The dichlorohydrate of bisiminoethyl ether of pyridine-2,6dicarboxylic acid was obtained as follows. The dinitrile (12.9 g; 0.1 mol) of pyridine-2,6-dicarboxylic acid was synthesized by the known method,9 and 250 ml of dry dioxane and 15 ml of dry ethanol were saturated at 0° with dry HCl for 14-16 hr. The reaction mixture was held for 5 days at 0°, and the residue formed was filtered off, washed with ether, and dried: mp 110°, yield 87%. Anal. Calcd for C<sub>11</sub>H<sub>15</sub>N<sub>3</sub>O<sub>2</sub>·2HCl: C, 44.89; H, 5.78; Cl, 24.15; N, 14.29. Found: C, 44.83; H, 5.69; Cl, 24.01; N, 14.25.

The bisiminoethyl ether of pyridine-2,6-dicarboxylic acid (1a)

<sup>(5)</sup> V. V. Korshak, A. L. Rusanov, and Ts. G. Iremashvili, Autor. Svi-

detelstvo SSSR 334219, Bull. 12 (1972). V. V. Korshak, A. L. Rusanov, D. S. Tugushi, and G. M. Cherkasova, Macromolecules, 5, 807.

<sup>(7)</sup> Japan Patent 26O N15991 (1968).

<sup>(8)</sup> E. L. Zaitseva, A. Ya. Yakubovich, G. I. Braz, and G. P. Basov, Zh. Org. Khim., 34, 3708 (1964).

<sup>(9)</sup> P. M. Hergenrother, J. Polym. Sci., Part A, 7, 945 (1969).

Table III Some Properties of Poly(triazoloquinazolines) of the General Structure

|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                    | hed COOH                                   |       |           | Anal. | ıl.     |           |       | C                  |            |                                |                         |                    |           |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------|--------------------------------------------|-------|-----------|-------|---------|-----------|-------|--------------------|------------|--------------------------------|-------------------------|--------------------|-----------|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yield | General                                                            | Cr3C00n-<br>H <sub>2</sub> SO <sub>4</sub> |       | Calcd (%) |       | F       | Found (%) |       | ע                  | Solubility |                                | Uv Spectra <sup>b</sup> |                    | Dec       |
| Compound<br>1 | Ar Ar' 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (%)   | Formula<br>5                                                       | (0.5%), 25°<br>6                           | C 7   | H 8       | ာစ    | C<br>10 | нп        | Z2    | CC3-<br>COOH<br>13 | 00H<br>14  | H <sub>2</sub> SO <sub>4</sub> | λ <sub>max</sub><br>16  | Log e              | (C)<br>18 |
| XVc           | ( <del>)</del> − (−) − ( <del>)</del> − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − (−) − | 02    | C30H16N8                                                           | 0.5-0.45                                   | 73.77 | 3.27      | 22.95 | 72.46   | 3.44      | 22.11 | œ                  | bs         | æ                              | 293                     | 5.04               | 540       |
| XVIc          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65    | $\mathrm{C}_{30}\mathrm{H}_{16}\mathrm{N}_{8}$                     | 0.48-0.45                                  | 73.77 | 3.27      | 22.95 | 70.40   | 3.19      | 22.33 | so                 | sd         | ss                             | 345<br>296              | 4.56<br>5.48       | 540       |
|               | ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                                    |                                            |       |           |       |         |           |       |                    | •          |                                | 355                     | 4.76               |           |
| XVIIc         | \_\ <b>Z</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73    | $C_{29}H_{15}N_9$                                                  | 0.44-0.2                                   | 71.12 | 3.65      | 25.76 | 69.97   | 3.45      | 25.59 | œ                  | sd         | œ                              | 290<br>355              | 4.96               | 200       |
| XCIIIc        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98    | $\mathrm{C}_{36}\mathrm{H}_{20}\mathrm{N}_{8}$                     | 0.35-0.3                                   | 76.60 | 3.54      | 20.0  | 74.93   | 3.61      | 19.20 | so                 | sd         | s                              | 289                     | 5.04               | 540       |
| XIXc          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70    | $\mathrm{C}_{34}\mathrm{H}_{20}\mathrm{N}_{8}$                     | 0.53-0.47                                  | 75.55 | 3.70      | 20.74 | 75.80   | 3.92      | 18.47 | ss                 | ins        | s                              | 272                     | $\frac{4.46}{5.1}$ | 490       |
|               | )<br>}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                    |                                            |       |           |       |         |           |       |                    |            |                                | 368                     | 4.6                |           |
| XXc           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 70  | $\mathrm{C}_{36}\mathrm{H}_{20}\mathrm{N}_{8}\mathrm{O}$           | 0.33-0.27                                  | 74.48 | 3.45      | 19.38 | 72.99   | 3.77      | 18.99 | ss .               | ins        | œ                              | 237<br>288<br>464       | 4.72<br>5.34       | 460       |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                    |                                            |       |           |       |         |           |       |                    |            |                                | 404                     | 4.35               |           |
| XXIc          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75    | $\mathrm{C}_{37}\mathrm{H}_{20}\mathrm{N}_8\mathrm{O}$             | 1.0-1.02                                   | 74.74 | 3.36      | 18.85 | 73.37   | 3.72      | 18.26 | sd                 | ins        | w                              | 286<br>401              | 4.96               | 470       |
| XXIIc         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 70  | $\mathrm{C}_{36}\mathrm{H}_{20}\mathrm{N}_8\mathrm{O}_2\mathrm{S}$ | 0.39-0.51                                  | 68.79 | 3.18      | 19.42 | 68.94   | 3.23      | 17.96 | sd                 | ins        | w                              | 292<br>345              | 4.95               | 510       |
| XXIIIc        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75    | $\mathrm{C}_{30}\mathrm{H}_{16}\mathrm{N}_{8}$                     | 0.27 - 0.25                                | 73.77 | 3.27      | 22.95 | 79.87   | 3.98      | 21.90 | s                  | œ          | ø                              | 277<br>353              | 4.75               | 540       |
| XXIVc         | <b>\( \phi\)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72    | $C_{30}H_{16}N_8$                                                  | 0.4-0.44                                   | 73.77 | 3.27      | 22.95 | 72.87   | 3.26      | 21.20 | ω                  | œ          | w                              | 277<br>354              | 5.0<br>4.4         | 540       |
| XXVc          | z O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89    | $C_{29}H_{15}N_{9}$                                                | 0.72-0.28                                  | 71.12 | 3.65      | 25.76 | 69.52   | 3.81      | 24.98 | œ                  | S          | œ                              | 282<br>342              | 5.02               | 465       |
| XXVIc         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70    | $\mathrm{C}_{36}\mathrm{H}_{20}\mathrm{N}_{8}$                     | 0.42 - 0.47                                | 76.60 | 3.54      | 20.0  | 74.86   | 3.68      | 18.82 | ss                 | sd         | w                              | 264<br>264              | 4.96               | 545       |
| XXVIIc        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70    | $\mathrm{C}_{34}\mathrm{N}_{20}\mathrm{N}_{8}$                     | 0.5-0.45                                   | 75.55 | 3.70      | 20.74 | 74.77   | 3.37      | 20.00 | œ                  | ins        | so `                           |                         | 4.75               | 530       |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                    |                                            |       |           |       |         |           |       |                    |            | a'                             | 313<br>354              | 4.3                |           |
| XXVIIIc       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65    | $C_{36}H_{20}N_8O$                                                 | 0.54-0.45                                  | 74.48 | 3.45      | 19.38 | 72.90   | 3.46      | 19.46 | so:                | ins        | œ                              | 273                     | 5.02               | 485       |

4.54

394

| 515                                                      | 480                                                                | 495               | 525               | 485                                             | 520                                            | 515                          | 545                  | 510                  | 535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------|--------------------------------------------------------------------|-------------------|-------------------|-------------------------------------------------|------------------------------------------------|------------------------------|----------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.96                                                     | 4.3                                                                | 4.46              | 4.84              | 4.98                                            | 5.18                                           | 5.14                         | 5.09                 | 5.09                 | 4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 285<br>348                                               | 285<br>355                                                         | 275<br>340        | 270<br>340        | 283<br>355                                      | 268<br>315                                     | 266<br>310                   | 283                  | 285<br>350           | 286<br>356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| s                                                        | ss                                                                 | so                | œ                 | œ                                               | ø                                              | œ                            | œ                    | w                    | ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ins                                                      | ins                                                                | œ                 | s                 | sd                                              | ins                                            | ins                          | ins                  | ins                  | ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ø                                                        | so                                                                 | ος                | œ                 | so                                              | S                                              | œ                            | ø                    | Ś                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18.86                                                    | 18.84                                                              | 24.89             | 25.15             | 27.86                                           | 21.95                                          | 22.05                        | 20.15                | 20.48                | 18.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.38                                                     | 3.06                                                               | 3.15              | 3.24              | 2.75                                            | 3.42                                           | 3.60                         | 3.16                 | 3.02                 | 2.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74.92                                                    | 67.04                                                              | 86.69             | 68.98             | 66.83                                           | 72.98                                          | 72.81                        | 70.85                | 71.15                | 68.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18.85                                                    | 19.42                                                              | 25.76             | 25.76             | 28.5                                            | 22.30                                          | 23.29                        | 21.69                | 21.34                | 20.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.36                                                     | 3.18                                                               | 3.07              | 3.07              | 2.85                                            | 3.36                                           | 3.15                         | 3.44                 | 3.25                 | 3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74.74                                                    | 68.79                                                              | 71.12             | 71.12             | 68.57                                           | 74.34                                          | 73.25                        | 72.30                | 72.60                | 70.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4-0.3                                                  | 0.4-0.2                                                            | 0.38-0.35         | 0.56 - 0.45       | 0.35-0.35                                       | 0.48-0.44                                      | 0.55-0.47                    | 0.6-0.5              | 0.45-0.4             | 0.45-0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathrm{C}_{37}\mathrm{H}_{16}\mathrm{N}_{8}\mathrm{O}$ | $\mathrm{C}_{36}\mathrm{H}_{20}\mathrm{N}_8\mathrm{O}_2\mathrm{S}$ | $C_{29}H_{15}N_9$ | $C_{29}H_{15}N_9$ | $\mathrm{C}_{28}\mathrm{H}_{14}\mathrm{N}_{10}$ | $\mathrm{C}_{35}\mathrm{H}_{19}\mathrm{N}_{9}$ | $\mathrm{C_{33}H_{19}N_{9}}$ | $C_{35}H_{19}N_{9}O$ | $C_{36}H_{19}N_{9}O$ | $C_{36}H_{19}N_{9}O_{2}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 70                                                       | 70                                                                 | 89                | 70                | 09                                              | 75                                             | 75                           | 72                   | 92                   | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          | -50.                                                               |                   |                   |                                                 |                                                |                              | -O-0-O-              |                      | $XXXVIIIC \qquad - \bigcirc \bigcirc - \mathrm{So}_{\varepsilon} - \bigcirc \bigcirc - \bigcirc \\ \bigcirc - \mathrm{So}_{\varepsilon} - \bigcirc \bigcirc - \bigcirc \\ \bigcirc - \mathrm{So}_{\varepsilon} - \bigcirc \bigcirc - \bigcirc \\ \bigcirc - \mathrm{So}_{\varepsilon} - \bigcirc \bigcirc - \bigcirc \\ \bigcirc - \mathrm{So}_{\varepsilon} - \bigcirc \\ \bigcirc - \mathrm$ |
| XXIXc                                                    | XXXc                                                               | $XXXIc^a$         | XXXIIc            | XXXIIIc                                         | XXXIVc                                         | $XXXV_{c}$                   | XXXVIc               | XXXVIIc              | XXXVIIIc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

was prepared as follows. The dichlorohydrate of bisiminoethyl ether of pyridine-2,6-dicarboxylic acid was dissolved in distilled water cooled up to 0° and treated with a 30% solution of K<sub>2</sub>CO<sub>3</sub> to neutral reaction to receive a free bisiminoethyl ether of pyridine-2,6-dicarboxylic acid. The product was purified by crystallization from dry ether: mp 67°, yield 90%. Anal. Calcd for C<sub>11</sub>H<sub>15</sub>N<sub>3</sub>O<sub>2</sub>: C, 59.73; H, 6.78; N, 18.99. Found: C, 59.92; H. 6.70; N, 19.00.

The hydrazide of o-nitrobenzoic acid was synthesized by the known method<sup>10</sup> and crystallized from ethanol: yield 95%, mp 123°, lit. mp 123°.10

The bisamidrazone of isophthalic acid (IIa) was prepared by the known procedure<sup>11</sup> and crystallized from acetonitrile. At 150° the product color changes to orange, and at 280° it becomes colorless, which is in agreement with the published results.11

The bisamidrazone of terephthalic acid (IIb) was prepared by the known method;12 the product has no melting point and changes to an orange color at 180°, being colorless at 300°, which is consistent with the data published.12

The bisamidrazone of pyridine-2,6-dicarboxylic acid (IIc) was prepared by the known method9 and recrystallized from water: mp 231° (in a block preheated to 210°), lit. mp 231° dec.

Bis(2-nitrobenzoyl)amidrazones (IIIa-c) were prepared by two ways: (a) 0.1 mol of bisiminoethyl ether of dicarboxylic acid (IIIac) was boiled with 0.2 mol of hydrazide of o-nitrobenzoic acid in 300 ml of ethanol. Yellow products precipitated on boiling were filtered off and crystallized.13

2-Nitrobenzoic acid chloride (0.02 mol) was dropped at 0° to the stirred mixture of 0.01 mol of bisamidrazone of aromatic dicarboxylic acid (IIa-c), 30 ml of dimethylacetamide, and 2.12 g (0.02 mol) of Na<sub>2</sub>CO<sub>3</sub>. The reaction mixture was stirred for 3 hr and poured into ice water; the vellow product was precipitated identical with the product synthesized by the above method. The properties of the products IIIa-c are given in Table IV. Bis[5-(2-nitrophenyl)-1,2,4-triazol-3-yl]arylenes (IVa-c) were prepared by heating of IIIa-c under reduced pressure (0.5-1 mm). Synthesis conditions and the general properties of IVa-c are represented in Table IV.

Bis[5-(2-aminophenyl)-1,2,4-triazol-3-yl]arylenes (Va-c) were prepared by reduction of IVa-c with hydrazine hydrate on Raney Ni in boiling ethanol for 4-6 hr. The general properties of the product are given in Table IV.

All aromatic dicarboxylic acid dichlorides were prepared as described previously and had melting points reported in the litera-

3-Phenyl-5-(2-benzamidophenyl)-1,2,4-triazole (VI) was synthesized by the known method<sup>2</sup> and purified by crystallization from the dimethylformamide-water mixture (1:1), mp 256° dec. Compound VIII was prepared as follows: (a) by the known method<sup>2</sup> and crystallization from alcohol (mp 175°); (b) by interaction of 0.01 mol of 3-phenyl-5-(o-aminophenyl)-1,2,4-triazole with 0.01 mol of benzoic acid in 15 ml of  $P_n$  at 50° for 1 hr, at 100° for 1 hr, at 150° for 1 hr, at 200° for 1 hr, and at 220° for 12 hr. The synthesized product was sublimed at 250-255° (1 mm) and crystallized from alcohol (mp 175°), yield 90%.

Arylenebis[3-phenyl-5-(2-amidophenyl)-1.2.4-triazoles] (Xa-h) were prepared by the known method;5 the general properties and characterization of the products are given in Table I.

þ

first described

5,5'-Bis[3-phenyl-s-triazolo[4,3-c]quinazolyl]arylenes were prepared by thermal cyclodehydration of Xa-h; their general properties and characteristics are given in Table I. Arylene-5,5'-bis[3-(2-benzamidophenyl)]-1,2,4-triazoles (XIIa-c) and 3,3' $bis[5-phenyl-s-triazolo[4,3-c]quinazolyl] arylenes \ \ (XIIIa-c) \ \ were$ synthesized by the known method; their general properties and characteristics are given in Table I.

Synthesis of Polymers. Synthesis of poly(o-amido triazoles) (XV-XXXIX) was performed by the following general method. Bis[5-(2-aminophenyl)-1,2,4-triazol-3-yl]arylene (0.01 mol) was placed into a 50-ml four-necked flask fitted with a mechanical stirrer, thermometer, argon inlet, and a funnel to charge aromatic dicarboxylic acid dichloride, 30 ml of hexamethylphosphoramide containing 5% of LiCl was added, and the mixture was stirred to form a solution. To the solution equimolar amounts of corresponding aromatic dicarboxylic acid dichloride were added in solid state during 20 min. The reaction was conducted at room

<sup>(10)</sup> R. Curtius and R. Trachmann, J. Prakt. Chem., 2, 168 (1895).

<sup>(11)</sup> H. Kersten and G. Meyer, Makromol. Chem., 138, 265 (1970).

<sup>(12)</sup> W. Ried and P. Schomann, Ann., 714, 128 (1968)

<sup>(13)</sup> P. M. Hergenrother, J. Heterocycl. Chem., 9, 1, (1972).

492 Campbell, Hill Macromolecules

| Table IV                                            |
|-----------------------------------------------------|
| Basic Properties of Diamines and Some Intermediates |

|               |                  |                                        |              |                 |                          |       |          | $A_i$      | nal.  |          |       |
|---------------|------------------|----------------------------------------|--------------|-----------------|--------------------------|-------|----------|------------|-------|----------|-------|
| 0             | Cyclizn          | Da                                     | \$7: 11      |                 | C 1                      |       | Found (% | <b>%</b> ) |       | Calcd (% | 6)    |
| Com-<br>pound | Condn<br>(°C/hr) | Recrystallization<br>from <sup>a</sup> | Yield<br>(%) | Mp (°C)         | General<br>Formula       | С     | Н        | N          | C     | Н        | N     |
| IIIa          |                  | DMF                                    | 90           | 230 dec         | $C_{22}H_{18}N_8O_6$     | 53.60 | 3.62     | 22.54      | 53.88 | 3.67     | 22.83 |
| IIIb          |                  | $DMF-H_2O(1:1)$                        | 92           | 245 dec         | $C_{22}H_{18}N_8O_6$     | 53.70 | 3.59     | 22.48      | 53.88 | 3.67     | 22.83 |
| IIIc          |                  | Ethanol                                | 88           | 199-200 dec     | $C_{21}H_{17}N_{9}O_{6}$ | 50.98 | 3.38     | 25.63      | 51.40 | 3.46     | 25.66 |
| IVa           | 260/3            | Alcohol-water (1:1)                    | 78.5         | 246-247         | $C_{22}H_{14}N_8O_4$     | 59.33 | 2.84     | 24.33      | 58.15 | 3.07     | 24.67 |
| IVb           | 260/3            | Acetone-water (1:1)                    | 80           | 313-315         | $C_{22}H_{14}N_8O_4$     | 57.72 | 2.90     | 24.65      | 58.15 | 3.07     | 24,67 |
| IVc           | 210/4            | Acetone-water (1:4)                    | 90           | 315             | $C_{21}H_{13}N_{9}O_{4}$ | 55.15 | 2.40     | 27.35      | 55.40 | 2.42     | 27.70 |
| Va            |                  | Dioxane-water (1:1)                    | 70           | 318-320         | $C_{22}H_{18}N_8$        | 66.02 | 4.94     | 27.90      | 66.62 | 4.63     | 28.35 |
| Vb            |                  | $DMF-H_2O(1:2)$                        | 75           | 330-331         | $C_{22}H_{18}N_8$        | 66.84 | 4.52     | 28.04      | 66.62 | 4.63     | 28.35 |
| Vc            |                  | Ethanol                                | 70           | $338 - 340^{b}$ | $C_{21}H_{17}N_{9}$      | 63.45 | 3.87     | 31.63      | 63.81 | 4.05     | 31.90 |

<sup>a</sup>See Table I, footnote b. <sup>b</sup>Lit. mp 338° (see ref 3, 14, and 13).

temperature for 6-8 hr. The resulting solution was poured into distilled water. The polymer was thoroughly washed with water, extracted with ethanol for 45-50 hr, and dried under reduced pressure, to a constant weight at 50-60°. The general properties and characteristics of poly(o-amido triazoles) are given in Table

Poly(triazologuinazolines) were prepared by solid-state cyclodehydration of aromatic poly(o-amido triazoles) under reduced pressure (0.5-1 mm Hg) at 50, 100, 150, 200, 250, and 300° for 1 hr and at 350–375° for 12 hr.

The basic characteristics of poly(triazoloquinazolines) (XV-XXXIX) are given in Table III.

Synthesis of Polymers in  $P_n$ . Bis [5-(2-aminophenyl-1,2,4-triazol-3-yl]arylene (0.01 mol), the dinitrile (0.01 mol) of aromatic di-

carboxylic acid, and  $P_n$  (20 g) were placed into a three-necked flask. The mixture was stirred at 100, 150, and 200° for 1 hr and at 250° for 3 hr. The resulting polymers are soluble only in  $H_2SO_4$ ;  $\eta_{red}$  is 0.2 - 1.2.

Investigations of Polymers. The curves of the dynamic thermogravimetric, differential thermal, and differential thermogravimetric analyses were obtained on the derivatograph of the "Paulik, Paulik and Erdel" type in air. The temperature increase rate

The ir spectra of polymers and model compounds were taken with the UR-10 and UR-20 spectrophotometers by using powders pressed with KBr.

The uv spectra of polymers and model compounds were taken with the Hitachi spectrophotometer.

### Polymerization of 4-Hydroxybenzenesulfonyl Chloride

#### R. W. Campbell\* and H. Wayne Hill, Jr.

Phillips Petroleum Company, Bartlesville, Oklahoma 74004. Received April 2, 1973

ABSTRACT: The conversion of 4-hydroxybenzenesulfonyl chloride (I) to high molecular weight poly(1,4-phenylenesulfonate) by treatment with tertiary amines in polar amide solvents is described. Conditions giving the highest molecular weight polymer are 1.25 equiv of triethylamine in hexamethylphosphoramide at 0°. This crystalline polymer has a glass transition temperature of 119° and a crystalline melting temperature of 276°. Solution polymerization of 3,5-dimethyl-4-hydroxybenzenesulfonyl chloride (II) is also described, along with copolymerization of I and II. Melt polymerization of I produces a polymer containing both sulfonate and hydroxysulfone repeat

There has been considerable interest shown in polymers of the general type  $(-C_6H_5X_-)_n$  throughout the last decade due largely to their high melting points and thermal stability. Several members of this "poly(phenylene) family" have recently become commercial products (X = S,CO<sub>2</sub>, CONH). Synthesis of poly(1,4-phenylenesulfonate)(PPSO $_3$ , X = SO $_3$ ) has been prevented by the lack of a suitable monomer (e.g., 4-hydroxybenzenesulfonyl chloride, I). Although a variety of 3,5-disubsituted-4-hydroxybenzenesulfonyl chlorides have been reported,1-4 the parent compound was only recently isolated.5,6 We found

- (1) T. Zincke and W. Glahn, Ber., 40, 3039 (1907).
- (2) S. Oae and R. Kiritani, Bull. Chem. Soc. Jap., 38, 1543 (1965).
- W. L. Hall, J. Org. Chem., 31, 2672 (1966).
   W. L. Hall, U. S. Patent 3,530,177 issued to General Electric (1970). (5) R. W. Campbell and H. Wayne Hill, Jr., J. Org. Chem., 38, 1047 (1973).
- (6) H. Wayne Hill, Jr., and R. W. Campbell, U. S. Patent 3,673,247 issued to Phillips Petroleum Co. (1972).

that I can be prepared by treating sodium 4-hydroxybenzenesulfonate with an excess of thionyl chloride in the presence of a catalytic amount of dimethylformamide at 60°. This study is concerned with the conversion of I into a high molecular weight polymer. Low-temperature solution polymerizations conducted in polar amide solvents in the presence of tertiary amines were found to be quite suitable for this reaction.

#### Results and Discussion

Polymer Properties. Poly(1,4-phenylenesulfonate) is normally obtained as a white, powdery solid which is insoluble in common organic solvents as well as most polymer solvents [e.g., methylene chloride, tetrahydrofuran (H<sub>4</sub>furan), acetone, dimethylformamide (DMF), Nmethylpyrrolidone (NMP), tetramethylurea (TMU), sulfolane, formic acid, etc.] Polymer of intermediate molecular weight (inherent viscosity, ≤0.5) is soluble in dimeth-